Linguistics and EUDAT

Pavel Straňák
Charles University in Prague
stranak@ufal.mff.cuni.cz

1st EUDAT User Forum
Barcelona
7. March 2012
Linguistics

- Theoretical linguistics (morphology, syntax, semantics, …)
- Lexicology and lexicography
- Field linguistics (documenting languages)
- Psycholinguistics
- Neurolinguistics (FMRI, EEG, MEG)
- Computational Linguistics (Natural Language Processing)
Linguistics

- A study of language
- A data science
 - *Always has been*
DATA (needs and production)

- Computational Linguistics
- Neurolinguistics
- Psycholinguistics
- Field linguistics
- Lexicography
- Theoretical linguistics

DATA (needs and production)
Data collection and processing

- An integral part, a foundation of linguistics
- Used to be prohibitively expensive
 - Small scale
 - Manual processing
 - Time consuming
 - Inferences based on limited samples
- Computer Science changed it all:
 - Massive data (billions of words per language) available
 - Automatic processing possible
 - NLP – Natural language processing
- Linguists are not Computer scientists
- Linguistics departments don’t have the infrastructure
Data Needs

- Statistical methods: “More data is better data” (training)
- Evaluation of new methods in NLP
 - Assuring the same data are used
 - Availability of the data (licensing)
 - Exact identification of the version (PID)
 - Same with tools (segmenters, analysers, synthesisers)
Most linguists don’t have:

- Access to data: being able to find out what exists, and get it
- Facilities for large and safe storage and replication
- Computers for running demanding applications with big data
 - Big processing power, but sometimes also a lot of memory for a shared model, or fast storage, etc.
- Expertise for effective acquisition and processing of data
Enable eHumanities:

- **integrated**: the resource and service centres are connected
- **interoperable**: to overcome format, structure and terminological differences
- **stable**: the resources and services are offered with a high availability
- **persistent**: the resources and services to be accessible for many years
- **accessible**: the resources and services accessible via the web; different access methods and training possibilities are offered tailored to the needs of the communities
- **extendable**: the infrastructure is open; new resources and services can be added easily
Clarin data centre

1. Web-based interface makes it easy for a submitter to create an archivable item by depositing files. DSpace was designed to handle any format from simple text documents to datasets and digital video.

2. Data files, also called bitstreams, are organized together into related sets. Each bitstream has a technical format and other technical information. This technical information is kept with the bitstreams to.

3. An Item is an "archival atom" consisting of grouped, related content and associated descriptions (metadata). An item's exposed metadata is retrieved for browsing and searching. Items are organized into collections of logically-related material.

4. A community is the highest level of the DSpace content hierarchy. It corresponds to parts of the organization such as departments, labs, research centers or schools.

5. DSpace's modular architecture allows for creation of large, multi-disciplinary repositories that ultimately can be expanded across institutional boundaries.

6. DSpace is committed to going beyond reliable file preservation to offer functional preservation where files are kept accessible as technology formats, media, and paradigms evolve over time for as many types of files as possible.

7. The end-user interface supports browsing and searching the archives. Once an item is located, Web-native formatted files can be displayed in a Web browser while other formats can be downloaded and opened with a suitable application program.

Language Processing Services

- Computer Science doing Linguistics
 - Speech recognition (speech-to-text) and synthesis (TTS)
 - Machine translation
 - Also for multilingual IR
 - Grammar checking
 - Everybody needs it (to work)
 - Information retrieval (search engines)
 - Information extraction
 - “What new topics have appeared in particle physics in the last 2 years?”
 - Question answering
- Very much Statistics and Machine learning (from Data)
Produce…

- Annotated text corpora and video archives
- Aligned multi-modal and multi-lingual resources
- Methods for creating and searching the above ...
 - for anyone, not just linguists
- Everyone works with (and using) language:
 - historic archives
 - medical documents
 - scientific literature
Linguistic Applications (Services)

- Smart spell checking and grammar checking
- Machine translation
- Speech recognition (dictation, subtitling)
- Speech synthesis (text-to-speech)
- Dialog systems
- Automated indexing of audio and video files for searching
EUDAT can help with:

- Identification and availability of resources
 - Many linguists: many places to search, not up-to-date
 - Unified portal to get (language) data
 - Data from other communities often still is or includes language data.
 - Interesting for info. retrieval and info. extraction
EUDAT can help with:

- Data hosting and replication
 - MALACH video history: 135 TB. We can only store and present 10-20TB (most of Czech, Slovak and Polish)
- Number crunching
 - SMT (Czech-English): 200/230 mil. words
 - 3 days to get to a transl. model (on a modest cluster)
- Workspaces and web applications for data annotation and searching
 - Current annotation tools are developed ad hoc
 - Many tools, little to no long-term support
 - Exactly the same for search tools
EUDAT can help with:

- Running workflow services
- End-to-end experience currently unreachable:
 - Choose the data (searchable data repository)
 - Choose the analysis (services, workflow system)
 - Run the analysis (big cluster, big memory...)
 - Present the results and store them (persistently)
Thank you for your attention