Rafael C Jimenez
ELIXIR CTO

RDA Fourth Plenary Meeting, ELIXIR Bridging Force IG
2014, Tuesday 23 September

European Life Sciences Infrastructure for Biological Information
www.elixir-europe.org
• What are the **partners**, who are the **service providers**, **the users**?
Challenges

• **Sustain** data and services
• Make data and service **interoperable**
 • Necessary to integrate data
 • Specially medical, clinical and research
• Data too big to **store, exchange & compute**? Forthcoming challenges ...
 • Data production grows faster than storage
 • Cost of data production technologies declines faster than storage
 • It takes longer to transfer data than produce the data.
• Privacy, security & access (AAI)
• Training
ELIXIR

• European **life sciences** research infrastructure for **biological information** to **support** all life science research

• **Safeguard data** and **build sustainable data services**
ELIXIR Members

- Participated by major bioinformatics service providers (~130) and supported by **17 EU member states** and **EMBL**

- 11 EU states signed agreement
 - Czech Republic, Estonia, Denmark, Finland, Israel, Netherlands, Norway, Portugal, Switzerland, Sweden, UK

- 6 EU signed MoU
 - Belgium, Greece, France, Italy, Slovenia, Spain
• **ELIXIR** deliver services through national **ELIXIR Nodes** building on national strengths and priorities
European Research Infrastructures
European Research Infrastructures

life sciences

ICT

e-infrastructures

LS

EUDAT

GÉANT

EGI

PRACE
Research infrastructures

Facilitate research

Physical facilities
Scientific information

Life sciences
E-infrastructures

Data

Transfer
Computation
Storage
Dispersed science

Data production

Data consumption
• What are the **resources/services** provided?
Infrastructure for Life Sciences

Services & connectors to drive access and exploitation
Sustain core data resources
Access, Search, Analysis …
Integration, Optimization, Privacy, …

Training

Tools

Standards

Data

Compute

Integration and interoperability of data and services
Access, Exchange & Compute on sensitive data
Scientific & technical
Professional skills for managing and exploiting data

Formats, Ontologies, Guidelines, …
• What are the agreements related to access to the RI or the services it provides (e.g. machine time, software, data, support, etc.)?
• What are the current or planned legal structures and **funding models** in place, etc?
According to the EUDAT CDI concept, what would be the requirements from your RI to formally join and integrate components of this RI as part of the CDI?
EUDAT aims to provide storage resources and other related services to the widest numbers of researchers. These resources have a cost and their access should be regulated. In your opinion, what would be the best model for accessing these resources:

- **Quality-based**: researchers apply for resources which are allocated on the basis of scientific excellence, originality, quality, and feasibility of the applications.
- **Quota-based**: access is based on quotas determined by e.g. the financial contributions from the CDI partners, or the research programmes agreed with pre-defined users.
- **Market-based**: access is granted to anyone against a fee.
• Suppose you are looking for a place to store and take care part of your scientific data for at least 10 years. What *conditions/requirements should EUDAT meet to be seen as the best place to put your data?*

• Affordable, trustworthy, robust, persistent, and easy to use. Easy to replicate and compute. Integration with RI and e-infrastructures.
EUDAT is currently a network of independent centers working within a common framework to develop and propose services. At present, contractual agreements (e.g. SLAs) can only be backed by centers as individual legal entities. In your opinion, should EUDAT move towards a single legal entity?
Thank you
ELIXIR technical activities

- ELIXIR Node activities, Task forces, Pilots
- Technical activities among different interest groups ...
ELIXIR strategic drivers

1. Establish a distributed infrastructure to scale with the challenge of data growth

2. Secure and deliver the core data resources underpinning life science research

3. Provide discoverable tools, services and connectors to drive data access and exploitation

4. Provide robust technical platforms and clouds for secure data access, data exchange and compute

5. Develop and maintain standards for data management, reuse and integration

6. Drive partnerships with user communities and other organisations to ensure high impact

7. Close the computational biology skills gap through a comprehensive training programme for professionals

8. Support innovation in big data biology
Areas of interest and programme of work

- Data interoperability, vocabulary and ontology services
- Tools interoperability and Service Registry
- Data resources & services
- Technical Services
- Domain specific services
- Training
- Management and operations
Task forces

- Working groups to coordinate the ELIXIR technical strategy
- Driven by national technical leads
- Plan, agree and implement technical strategies
- Represent ELIXIR on one specific technical topic
Task forces

Data interoperability, vocabulary and ontology services
- Interoperability

Tools interoperability and Service Registry
- Service registry

Data resources & services
- Metrics, monitoring & quality control

Technical Services
- Cloud
- Storage
- AAI

Training
- Training portal
- E-learning

Management and operations
- Communications
- Website
ELIXIR Pilot Projects

1. ELIXIR Facing **Cloud Support and Virtual Machines** - with SIB
2. ELIXIR Data IO to pilot the **continuous transfer of major archive resources** to a remote European location - with CSC, Finland
3. Establishing EGA **Distributed authentication** - with CSC, Finland
4. Establishing **EGA** as joint venture – with CRG, Spain
5. **Improving links** between Human Proteome Atlas (HPA) and EMBL-EBI resources
6. BILS-ProteomeXchange integration using EUDAT resources
7. Interoperable controlled-access big data transfer technology for ELIXIR - application to EGA EBI / CRG ELIXIR collaboration and beyond
8. Harmonising Marine Metagenomics pipelines
Affinity with RDA groups

Life science

- The BioSharing Registry: connecting data policies, standards & databases in life sciences
- Wheat Data Interoperability WG
- Agriculture Data Interest Group (IGAD)
- Marine Data Harmonization IG
- Metabolomics
- Structural Biology IG
- Toxicogenomics Interoperability IG
Affinity with RDA groups

• Data Description Registry Interoperability
• Big Data Analytics IG
• Domain Repositories Interest Group
• Education and Training on handling of research data
• Federated Identity Management
• Metadata IG
• Preservation e-Infrastructure IG
• Service Management IG
• Active Data Management Plans
• Sustainability of eResearch / Cyberinfrastructure
Affinity with RDA groups

- Data Citation WG
- Data Foundation and Terminology WG
- Metadata Standards Directory Working Group
- PID Information Types WG
- RDA/WDS Publishing Data Bibliometrics WG
- RDA/WDS Publishing Data Services WG
- RDA/WDS Publishing Data Workflows WG
- Repository Audit and Certification DSA–WDS Partnership WG
- Long tail of research data IG
- PID Interest Group
- RDA/WDS Publishing Data IG
- Research Data Provenance
ELIXIR 2015 Objectives

Build the ELIXIR community.

Lay the foundation for long-term sustainability of core resources.

Define and deliver visible and useful ELIXIR services.
Data resources in life science

- Many
- Diverse
- Disperse

~1800 molecular biology data resources

Genomics Databases (non-vertebrate) (17.9%)
Protein sequence databases (12.9%)
Human Genes and Diseases (9.8%)
Structure Databases (9.7%)
Metabolic and Signaling Pathways (9.3%)
Nucleotide Sequence Databases (8.8%)
Human and other Vertebrate Genomes (7.1%)
Plant databases (7.1%)
RNA sequence databases (4.9%)
Microarray and other Gene Expression Databases (4.5%)
Other Molecular Biology Databases (3.3%)
Immunological databases (1.8%)
Organelle databases (1.6%)
Proteomics Resources (1.2%)
Cell biology (0.2%)

Nucleic Acids Research annual Database Issue and the NAR online Molecular Biology Database Collection in 2012.
MY Galperin, GR Cochrane – Nucleic Acids Research, 2011
Utility of databases

Scientific impact

Too little information Too many databases
Too diverse interfaces
Data interoperability

Homogeneous integration

Heterogeneous integration
Improving Links Between distributed European resources

ELIXIR pilot: Interoperability of protein expressions resources

The Human Protein Atlas portal is a publicly available database with millions of high-resolution images showing the spatial distribution of proteins in 46 different normal human tissues and 20 different cancer types, as well as 47 different human cell lines.
Growing data
Proteomics data in PRIDE

~85% raw data
Data types examples

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Process data</th>
<th>Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TTGTTATCCG…</td>
<td>DNA</td>
</tr>
<tr>
<td></td>
<td>LPISASHSSK…</td>
<td>Human</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Mitochondria</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>W. Smith</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Peptide</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Mouse</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Heart</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>Nucleus</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>J. Heinz</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Data submission

Submissions →

raw data →
processed data →
metadata →

Centralized database
Data submission - pilot

Submissions

raw data

processed data

metadata

PID

EUDAT
Data analysis
Cross-site VM Operation - pilot

- Perform analysis via cloud infrastructures and VMs
- Transfer VMs between computing centers to allow researchers to perform analyses that they could not otherwise do locally
- Supported by 5 NRENs and in collaboration with
Cross-site VM Operation

EMBL-EBI

ENA 3.2PB

Data

VM

ENB

Janet

1GB lightpath

1GB lightpath

SURFnet

VM

University of Groningen

CSC

Computation

Analysis tools

Chipster 200GB

VM

Funet

1GB lightpath

NBIC Galaxy 50GB

GoNL 60TB

ENB

Analysis tools

Data
European ELIXIR Data - “LightPath” (EBI / CSC)

• **Aim**
 • To explore the replication of large scale (Petabyte scale) archives to remote sites
 • To create a separate source of data files for challenging DataIO projects

• **Update:**
 • Selection of pilot data transfer technology between EBI and CSC
 • Established a dedicated light path between datacenters in London and Kajaani
 • Development of model for future IO needs in the lifesciences in Europe
REMS - Resource Entitlement Management System

- Access to sensitive data (genomics) granted by a Data Access Committee
- In collaboration with eduGAIN
- Agreements to be applied to other domains: FI-CLARIN & FI-CESSDA

1. Apply for access
2. Commit to licence terms
3. Circulate to approver
4. Approve
5. Access

https://tnc2013.terena.org/getfile/421
Starting point: https://remsdemo.csc.fi/
For Big Data to become huge, however, there are still hurdles to leap. For one thing, the tools to analyse data are not yet good enough. And **people with the skills to analyse data are scarce and will become scarcer**. By 2018 there will be a “talent gap” of between 140,000 and 190,000 people, …
EGA is to be distributed effort with archive, submission, and data distribution capacity at both the EBI and CRG.

From the users point of view, EGA remains one integrated Archive of secure human biomedical research data.

Search of datasets at either website is "global" across the EGA.
CASE: process for applying access to the Nordic Control Database

- **Research group members**
 - Start
 - Fill in or update an application and commit to the terms of use

- **Principal Investigator**
 - Request amendments
 - Technical check of the application
 - Proposes approval or rejection
 - Approval, rejection or request to amend the application

- **DAC secretary**
 - Submit application
 - Technical check of the application

- **DAC**
 - Information on approval or rejection
 - Implementation of DAC’s decision
 - Proposes approval or rejection
 - Access grant?
 - Yes: Implement access rights for the research group
 - No: End

- **Operator**
 - Informs Operator
 - Informs PI on decision
 - PI learns access has been granted/denied
 - Implementation of DAC’s decision

- **End**
 - Research group members learn how to use the access rights

- **Submission**
 - Sanity check
 - Decision
 - Implementation
ELIXIR pilots to address key challenges in biomedical research:

1. Cloud computing
 “Embassy cloud”: Access reference data in a virtual environment — work as though you are at EMBL-EBI or SIB, Switzerland

2. Authentication & Authorisation
 Improved methods and processes for access to clinical data

3. High-Performance Computing
 “Lightpath”: Connections for on-demand reference data to remote HPC centres at EMBL-EBI and CSC Finland
Minimum metadata
life sciences

- Title
- Description
- Creator
- Publication Date
- Topics
- Audience
 ...
Data deposition
Data submission

Submissions → raw data → Centralized database
- processed data
- metadata
Data sharing

The casual approach
‘data on my disk and available to anyone who requests it’

Submission to data repositories
Data submissions

Journal request

Curator

Data management

Data repository

Journal

Data repository

Data repository

Data Management Plan
Data sharing

Will big data affect data deposition?

The casual approach
‘data on my disk and available to anyone who requests it'

Submission to data repositories
Data submissions

How much data?
How much available data?