
www.eudat.eu www.prace-ri.eu

Intro to Python and HPC batch scheduler

Giuseppe Fiameni / CINECA

Trieste 23rd September 2019



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

AGENDA

9/23/2019 2

 Set up Jupyter Notebook on Galileo System

 Python Basics

 HPC Job Submission via SLURM



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

What are notebooks?

9/23/2019 3

 A notebook combines the functionality of 

 a word processor — handles formatted text

 a "shell" or "kernel" — executes statements in a 

programming language and includes output inline

 a rendering engine — renders

HTML in addition to plain text



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

GALILEO

Model: IBM NeXtScale

Architecture: Linux Infiniband Cluster

Processors: 16-cores Intel Broadwell 2.30 GHz (2 per node)

Number of Nodes: 360

Internal Network: Infiniband

Accelerators: 2 NVIDIA Tesla K40 on 40 nodes (80 in total)

RAM: 128 GB/node, 8 GB/core

OS: RedHat CentOS release 7.0, 64 bit

GALILEO is a smaller cluster that will be 
your «home» during this week. It is 
equipped with accelerators for deep 
learning applications.



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Set up Jupyter Environment

9/23/2019 5

 Pick up a personal test account

 Password: pitipmT3P

 Try to login:

 $ ssh

a08trbXX@login.galileo.cineca.it

 Account

 train_ceudat19

mailto:a08trbXX@login.galileo.cineca.it


EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Set up Jupyter Environment

9/23/2019 6

 Create SSH Keys Pair (on your own workstation)

 $ ssk-keygen –t rsa # you can leave the passphrase 

empty

 .ssh/id_rsa

 .ssh/id_rsa.pub

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub 

a08trbXX@login.galileo.cineca.it

 $ ssh a08trbXX@login.galileo.cineca.it



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Set up Jupyter Environment

9/23/2019 7

 $ git clone https://gitlab.eudat.eu/eudat-prace-

2019/forward.git

 $ bash hosts/galileo_ssh.sh >> ~/.ssh/config

 $ bash setup.sh

 $ bash start.sh jupyter-pip



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 9/23/2019 8



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 9/23/2019 9



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Python Notebook

9/23/2019 10

 $ git clone 

https://gitlab.eudat.eu/eudat-prace-

2019/intro-to-python.git



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Why Python?

9/23/2019 11

 Python is a clear and powerful object-oriented programming language:

 Easy to learn

 It is very simple to learn the basis of the language

 Easy to read

 Elegant syntax similar to pseudo-code

 Easy to use

 It is simple to get your program working

 Ideal for prototype development

 Large standard library

 And easy to extend by adding new modules

 Open source software



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Python is slow

9/23/2019 12

 Python is slow compared with other compiled languages already used in 

computational science. 

 So, why Python is becoming so popular in computational science?

 It is definitely easy to learn and use

 Usually scientists are not expert programmers

 You can start to practice using it like a scripting language

 Writing scripts for pre or post-process your data

 You can accelerate Python

 Using scientific modules (e.g. numpy)

 Using Python combined with other languages



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Python and HPC

9/23/2019 13

How you can use Python for HPC?

 Accelerating it

 Numpy

 F2py

 Cython

 Numba

 CUDA Python

 Creating ad hoc work-flows

 High-throughput computing (HTC)

 Fault tolerance



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Python language syntax

9/23/2019 14



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Objects and types

Python is strongly typed and dynamically typed

>>> a = 4000 

>>> b = a

>>> a = 4000.5

>>> type(a) # Everything has a type

Operator “=” means a reference to a space in memory that contains an object

>>> id(a)  

Objects are mutable (once created can be changed or updated) or immutable



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Strings

Strings can be created using quotes (single, double or triple)

>>> a = 'home'   

>>> b = “new home”

Triple quotes are used for string that span over more than a single line

>>> '''This is the first line 

... this is the second line'''

Escape characters are similar to C (\n \t)



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Strings (part 2)

Multiple actions on strings
>>> a = 'my new home'

>>> a.upper()

>>> a.split()

Single elements of strings can be accessed 
>>> a[2]

>>> a[0:2] # python index starts from 0

>>> a[-4:] # no values means beginning or 

end

Concatenation of strings
>>> a + “ is beautiful”

>>> a * 3



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Containers

List (mutable)
>>> a = [1, 1, 2, 'home']

Tuple (immutable)
>>> a = (1, 4, 'seven', 6)

Dict (mutable)

>>> a = {'a': 2, 'b':4, 4:5}

Set (mutable)
>>> a = set([1, 1, 3, 5])



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Lists

Can be not homogeneous

>>> a = [1, 1, 2, 'home']

Index ranges from 0 to len(list)-1

Slicing 

>>> a[0:3] # from first to third element [i:j:k]  k = 

stride

>>> a[-1:]+a[:-1] # ['home', 1, 1, 2]

Mutable (in-place)

>>> a[0] = 4  # [4, 1, 2, 'home']



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Lists

append

>>> a = [1, 1, 2, 'home']

>>> a.append(3) # [1, 1, 2, 'home', 3]

pop 

>>> a.pop() # remove rightmost element

3

Function “range” can be used to create list of integers

>>> a = list(range(3)) # [0, 1, 2] 

>>> b = list(range(2, 10, 3)) # [2, 5, 8]

# first, last (excluded), step



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Dictionaries

Map keys to values (mappings)
>>> a = {'b':2, 'c': 3} # 'b', 'c' are keys

# 2, 3 are values   

>>> a['b'] # returns 2

There is no left to right order, only mapping
>>> a[-1] # does not work 

a.keys(), a.values(), a.items()



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Control-flow statements

Indentation matters

>>> if a > 3:  # mind the colon

...     print a

...     print 'still in the if statement'

... elif a == 3:

...     print 'a is equal to 3'    

... else:

...     print 'a is less than 3'

...

>>>



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

For loop

Any sequence object is iterable
>>> for i in range(5):

...     print(i)   #  prints 0, 1, 2, 3, 4

More common in python 
>>> a = [1, 1, 4, 'home']

>>> for i in a:

...     print(i)   #  prints 1, 1, 4, 'home'

break # exit from inner loop

continue # go to next iteration



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

While loop

If you don’t know the number of the step of the loop
>>> while error > tollerance:

...     result, error = compute(result)

...

>>>

Sometime you want to perform an infinite loop end exit only after a check
>>> while True:

...     result, error = compute(result)

...     if error < tollerance: break

...

>>>



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

While loop

What happens if the computation doesn’t reach the convergence? 

It’s better to add a safe exit strategy…

>>> while c < max_steps:

...     result, error = compute(result)

...     if error < tollerance: break

...     c += 1

...

>>>



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Boolean conversion

Built-in types can be converted in bool, i.e. they can be used as condition 

expressions

int 0            # False

int != 0         # True

float 0.0        # False

float != 0.0     # True

empty string “”  # False

empty sequence   # False 



stack: lists and while loop

It is possible to use a list as a stack and pop-out objects until the stack is empty.

>>> stack = [obj1, obj2, obj3, obj4, obj5]

>>> while stack:

...     obj = stack.pop()

...     do_some_computation(obj)

...

>>>



File I/O

Old style:
>>> f = open('filename.txt', 'r')

>>> lst = f.readlines()

>>> f.close()

New style (stronger):
>>> with open('filenam.txt', 'w') as f:

...     f.write('some string\n')

Iterating on file:
>>> for line in f:

...     a_list.append(line.strip())

The with statement 

automatically takes 

care of closing the file 

once it leaves the with 

block, even in cases of 

error. 



Functions

Function definition
>>> def mysum(a, b):

...     “A description of the function.”

...     return a + b

...

Function call
>>> mysum(4, 6)

10

>>> mysum(‘4’, ‘6’)

‘46’



modules

A module is a file containing Python definitions and 

statements. 

The file name is the module name with the suffix .py

appended.

Within a module, the module’s name (as a string) is available 

as the value of the global variable __name__.



How to use a module

$ cat fibo.py

def fib(n):

“Return Fibonacci series up to n.”

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

>>> import fibo

>>> fibo.fib(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]



Command line arguments

$ cat myprog.py

import sys

if len (sys.argv) < 2 :

print "Usage: python {} <args>".format(sys.argv[0])

sys.exit(1)

for x in sys.argv[1:]:

print("Argument: ", x)

$ python myprog.py arg1 arg2

Argument: arg1

Argument: arg2

$ python myprog.py

Usage: python myprog.py <args>



subprocess

>>> from subprocess import Popen

The Popen constructor execute a child program in a new process.

>>> command_line = “executable -i inp.txt -o 

out.txt”

>>> p = Popen(command_line.split(), 

stdout=file_obj)

p.poll(), p.wait(), p.communicate(), p.kill(), p.pid



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

HPC Job Submission via SLURM

9/23/2019 34



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

GALILEO

Model: IBM NeXtScale

Architecture: Linux Infiniband Cluster

Processors: 16-cores Intel Broadwell 2.30 GHz (2 per node)

Number of Nodes: 360

Internal Network: Infiniband

Accelerators: 4 nVIDIA Tesla K40 on 40 nodes (160 in total)

RAM: 128 GB/node, 8 GB/core

OS: RedHat CentOS release 7.0, 64 bit

GALILEO is a smaller cluster that will be 
your «home» during this week. It is
equipped with accelerators, especially
GPUS



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

How to login

 $ ssh a08trbXX@login.galileo.cineca.it



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Python Notebook

9/23/2019 37

 $ git clone 

https://gitlab.eudat.eu/eudat-prace-

2019/intro-to-slurm.git



Working environment

 $HOME:

 Permanent, backed-up, and local to GALILEO. 50 Gb of quota. For source code 

or important input files.

 $CINECA_SCRATCH:

 Large, parallel filesystem (GPFS).

 No quota. Run your simulations and calculations here. A cleaning policy will 

delete all your files older than 40 days. 

 $WORK:

 Similar to $CINECA_SCRATCH, but the content is shared among all the users of 

the same account.

 1 TB of quota (no cleaning policy). Stick to $CINECA_SCRATCH for the school 

exercises!



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Job scheduler

 As every HPC system, GALILEO allows you to run your applications by 
submitting “jobs” to the compute nodes

 Your job is then taken in consideration by a scheduler, that adds it to a 
queuing line and allows its execution when the resources required are 
available

 The operative scheduler in GALILEO is SLURM

 SLURM stands for "Simple Linux Utility for Resource Management" 

 Allocating access to resources 

 Job starting, executing and monitoring 

 Queue of pending jobs management



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM job script schema

 The schema of a SLURM job script is as follows:

#!/bin/bash

#SLURM directives

variables environment

execution line



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Jobscript example

#!/bin/bash

#SBATCH --job-name=myname

#SBATCH --output=job.out

#SBATCH --error=job.err

#SBATCH --mail-type=ALL

#SBATCH --mail-user=user@email.com

#SBATCH --time=00:30:00 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=36

#SBATCH --mem=10GB

#SBATCH --partition=gll_usr_prod

#SBATCH --account=s_tra_eudat

echo “I’m working on GALILEO!”



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM directives - 1

 #SBATCH --job-name=myname, -J myname

 Defines the name of your job

 #SBATCH --output=job.out, -o job.out

 Specifies the file where the standard output is directed (default=slurm-<Pid>)

 #SBATCH --error=job.err, -e job.err

 Specifies the file where the standard error is directed (default=slurm-<Pid>)

 #SBATCH --mail-type=ALL (optional)

 Specifies e-mail notification. An e-mail will be sent  to you when something happens to your 
job, according to the keywords you specified (NONE, BEGIN, END, FAIL, REQUEUE, ALL)

 #SBATCH --mail-user=user@email.com (optional)

 Specifies the e-mail address for the keyword above



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM directives - 2

 #SBATCH --time=00:30:00, -t 00:30:00

 Specifies the maximum duration of the job. The maximum time allowed 
depends on the partition used

 #SBATCH --nodes=1, -N 1

 #SBATCH --ntasks-per-node=36

 #SBATCH --mem=10GB

 Specify the resources needed for the simulation.

 nodes – number of compute nodes (“chunks”)

 ntasks-per-node – number of cpus per node (max. 36)

 mem – memory allocated for each node (default=3000MB, max=118000 
MB)

 #SBATCH --partition=gll_usr_prod, -p gll_usr_prod

 Specifies the “partition”, a.k.a. the specific set of nodes among which your job 
can search for resources.



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Accounting system

 #SBATCH --account=s_tra_eudat, -A 

s_tra_eudat

 Specifies the account to use the CPU hours from.

As an user, you have access to a limited number of CPU hours to spend. 
They are not assigned to users, but to projects and are shared between 
the users who are working on the same project (i.e. your research 
partners). Such projects are called accounts and are a different concept 
from your username.



Account for the School

 The accounts created for this school are:
 #SBATCH --account=s_tra_eudat // Normal 

Partition

 #SBATCH --account=s_tra_eudatgpu // GPU 

Partition

 They will expire two weeks after the end of the school and 

are shared between all the students.



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM commands - 1

After the job script is ready, all there is left to do is to submit it:

 $ sbatch <job_script>

 Your job will be submitted to the SLURM scheduler and 

executed when there will be nodes available (according to your 

priority and the partition you requested)

 $ squeue –u $USER

 Shows the list of all your scheduled jobs, along with their 

status (idle, running, closing, …) Also, shows you the job id 

required for other SLURM commands



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM commands - 2

 scontrol show job <job_id>

 Provides a long list of information for the job requested.

 In particular, if your job isn’t running yet, you'll be notified 

about the reason it is not starting and, if it is scheduled 

with top priority, you will get an estimated start time

 scancel <job_id>

 Removes the job (queued or running) from the scheduled 

job list by killing it



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

SLURM commands - 3

 sinfo

 sinfo -p <partition name>

 sinfo -l

 sinfo -N -l -p gll_usr_prod

 Provides information about SLURM nodes and partitions

 sacct

 sacct OPTIONS <job_id>

 Displays accounting data for all jobs and job steps in the

 SLURM job accounting log or Slurm database.



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Thank you!

9/23/2019 50


