

Introduction to Deep Learning

Marco Rorro m.rorro@cineca.it

CINECA - SCAI SuperComputing Applications and Innovation Department

%www.eudat.eu %www.prace-ri.eu

Table of Contents

Introduction

Machine Learning Background

Deep Learning: a review

Convolutional Networks

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

Introduction

Machine Learning Background

Deep Learning: a review

Convolutional Networks

Artificial Intelligence, Machine Learning and Deep Learning

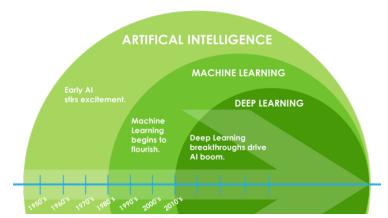
A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

ubset of machine learning ir which multilayered neural networks learn from vast amounts of data


Source: Cousins of AI, https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

A bit of history

Source: https://buzzrobot.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-ccfd779eca7b

Introduction

Machine Learning Background

Deep Learning: a review

Convolutional Networks

Definition of Learning Algorithm [Mitchell 1997]¹

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Definition of Learning Algorithm [Mitchell 1997]¹

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

So we need to identify:

► the class of tasks T

Definition of Learning Algorithm [Mitchell 1997]¹

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

So we need to identify:

- ► the class of tasks T
- the measure of performance P

Definition of Learning Algorithm [Mitchell 1997]¹

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

So we need to identify:

- ► the class of tasks T
- the measure of performance P
- the source of experience E

task class T: playing checkers

- task class T: playing checkers
- performance measure P: fraction of games won against opponents

- task class T: playing checkers
- performance measure P: fraction of games won against opponents
- training experience E: playing practice games against itself

82944649709295159133 23591762822507497832 1/836/03100112730465 26492899307102635465

1359176	9709295159183 2822507497832 3100112730465 9307102035465
North Anna Congolithic Standard Alban Marina Anna Alban Marina Anna Alban Marina Alban Marina Alban Marina Alban Marina Alban Marina Alban Marina Alban	Leve proof fragments for the former of the second s
Tables, Hennes. In one processing of generative faces an other and a data on the set of the set of the set faces of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the Mark Set of the set of the set of the Balance Set of the set of the set of the Balance Set of the set of the set of the set of the Balance Set of the set of the set of the set of the Balance Set of the set of the set of the set of the set of the Balance Set of the set of the set of the set of the set of the Balance Set of the set of the set of the set of the set of the Balance Set of the set of the Balance Set of the set of the set of the set of the set of the set of the set of the Set of the set of the set of the set of the se	Even Beneral (2) from Free Sel rotat par sectors for your provides (2) promotel (2) 53 from Berl sec descriptions (2) from sec Discoverse Trans generations

task class T: recognizing and classifying handwritten characters within images

1183610	9709295159183 2822507497832 9300112730465 9307102035465
Next Manan Bachman Ang Tachana Ang Tachana Ang Tachana Ang Ang Tachana Ang Ang Tao Tao Tao Tao Tao Tao Tao Tao Tao Tao	
The fact for a fact (f) is a set or a proving out , buy to a set of point of point (f) is to point (f) if it is a factorized. If it is a set of the set of the fact of the fact to a set of the set of the fact of the fact of the fact to a set of the fact of th	Jan Kandala Berry non Jan Kita La Ananta' da 53 Jan da tao Kandalananta da San da tao

- task class T: recognizing and classifying handwritten characters within images
- performance measure P: fraction of characters correctly classified

1183610	9709295159133 2822507497832 3100112730465 9307102035465
and the second second	
	New prog they will get at the profine
Sandi Sanah Sala Kingan Direc Sanahori	was over d'adat d'adin Visit Cole
trips may achieve. Ap mark thread "	123656 7890 Jam Burne friendlike & 50
Tables, Denne, for only two drawn gat by papelpology, to other field of the start of the start of the start the start of the start of the start of the start of the best test and the start of the start of the start of the best test and the start of the start of the start of the start of the start of the start of the start of the best test and the start of	Eland Reena de como fine cato cato por seconda como reenativa da presentativa como presentativa da
Son property limits.	doublement de Nous en menercie
	Bien million

- task class T: recognizing and classifying handwritten characters within images
- performance measure P: fraction of characters correctly classified
- **training experience E:** a database of handwritten characters with given classifications

► **training experience E:** a number of training examples $E = \{z_1, z_2, z_3 ...\}$ each example is a (input,target) pair: $Z_i = (X_i, Y_i)$

- ► **training experience E:** a number of training examples $E = \{z_1, z_2, z_3 ...\}$ each example is a (input,target) pair: $Z_i = (X_i, Y_i)$
- ► task class T: a decision function f able to predict unknown Y from known X

- ► **training experience E:** a number of training examples $E = \{z_1, z_2, z_3 ...\}$ each example is a (input,target) pair: $Z_i = (X_i, Y_i)$
- task class T: a decision function f able to predict unknown Y from known X
- **performance measure P:** a loss function *L* to measure the (non-symmetric) distance $L(f, Z_i) = d(f(X_i), Y_i)$

- ► **training experience E:** a number of training examples $E = \{z_1, z_2, z_3 ...\}$ each example is a (input,target) pair: $Z_i = (X_i, Y_i)$
- task class T: a decision function f able to predict unknown Y from known X
- **performance measure P:** a loss function *L* to measure the (non-symmetric) distance $L(f, Z_i) = d(f(X_i), Y_i)$

Examples:

- regression
 - ► X is a real-valued scalar or vector
 - ► Y is a scalar real value
 - f is able to predict Y_i value from X_i
 - L is usually the euclidean norm

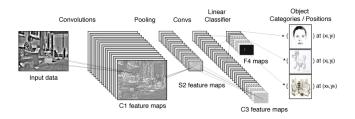
- ► **training experience E:** a number of training examples $E = \{z_1, z_2, z_3 ...\}$ each example is a (input,target) pair: $Z_i = (X_i, Y_i)$
- ► task class T: a decision function *f* able to predict unknown *Y* from known *X*
- **performance measure P:** a loss function *L* to measure the (non-symmetric) distance $L(f, Z_i) = d(f(X_i), Y_i)$

Examples:

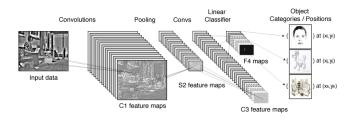
- regression
 - ► *X* is a real-valued scalar or vector
 - ► Y is a scalar real value
 - f is able to predict Y_i value from X_i
 - L is usually the euclidean norm
- classification
 - ► X is a real-valued scalar or vector (features)
 - Y is an integer (label) corresponding to a class index
 - f is able to provide the probability of X_i being in class Y_i
 - L is usually the negative log-likelihood

Introduction

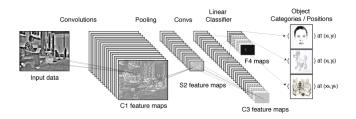
Machine Learning Background


Deep Learning: a review

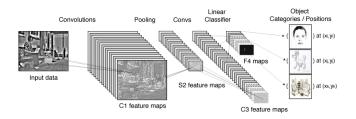
Convolutional Networks


PRACE

Deep Learning



► Application of an Artificial Neural Network to a data set to find a pattern



- Application of an Artificial Neural Network to a data set to find a pattern
- Multiple hidden layers (to mimic human brain processes associated to vision/hearing)

- Application of an Artificial Neural Network to a data set to find a pattern
- Multiple hidden layers (to mimic human brain processes associated to vision/hearing)
- Big data sets and relevant number of variables

A recently published review¹ can help on summarizing main aspects of deep learning.

- 1. Models are composed of multiple processing layers:
 - multiple layers of abstraction to learn data representations.
- 2. Improved state-of-the-art in:
 - speech recognition, object recognition, object detection;
 - drug discovery, genomics.
- 3. Discovers complex patterns in large datasets:
 - backpropagation to change layer parameters;
 - representation in each layer is based on previous layer results;
- 4. Specialized networks for different data;
 - deep convolutional networks: image, video, speech;
 - recurrent networks: sequential data (text, speech).

¹Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep Learning, Nature 2015

LeCun Bengio and Hinton stress that:

LeCun Bengio and Hinton stress that:

 conventional machine-learning techniques were limited in their ability to process natural data in their raw form;

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;
- considerable domain expertise is needed to pick a representation suitable to the task.

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;
- considerable domain expertise is needed to pick a representation suitable to the task.

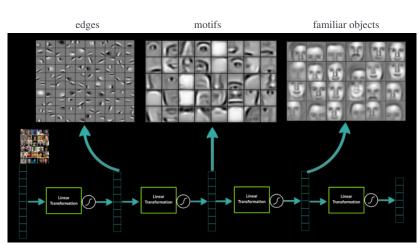
On the other side, they consider deep learning methods as representation-learning methods.

"Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representation needed for detection or classification"

Neural networks as representation learning methods

Data flow:

- input: raw data;
- output: detection/classification distribution probabilities;
- ▶ in the process: a layer is fed with data representation learned from previous layer.


Key aspects:

- no a-priori design of features;
- they are learned from data using a general purpose procedure.

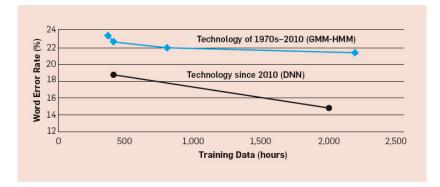
cture

Image Example

Deep learning main results (I)

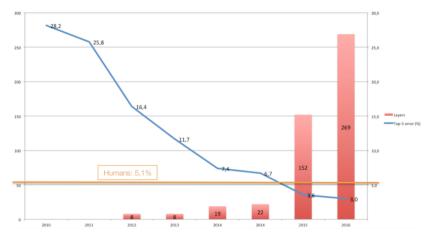
- Good at discovering intricate structures in high-dimensional data.
- Exhibits superior performances (compared to other ML techniques):
 - image and speech recognition;
 - prediction of the activity of potential drug molecules;
 - analysing particle accelerator data;
 - reconstructing brain circuits;
 - predicting the effects of mutations in non-coding DNA on gene expression and disease.
- Shows promising results in natural language processing (NLP):
 - ▶ topic classification, sentiment analysis, question answering and language translation.

Deep learning main results (II)


Video activity detection

Tabular and time-series data applications

Accuracy on Speech Recognition



Source: Huang, Baker, Reddy, A Historical Perspective of Speech Recognition, Communications of the ACM, January 2014 GMM: Gaussian Mixture Models, HMM: Hidden Markov Models, DNN: Deep Neural Networks

How deep is deep learning?

Number of layers in ILSVRC (ImageNet Large Scale Visual Recognition Competion) winners, compared to accuracy.

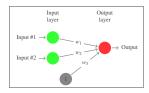
How deep learning works?

In the following, we will see:

- the effect of adding a fully connected layer to an existing classifier;
- the effect of describing our data in a "wider" hyperspace.

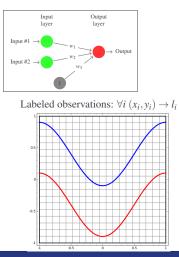
How deep learning works?

In the following, we will see:


- the effect of adding a fully connected layer to an existing classifier;
- the effect of describing our data in a "wider" hyperspace.

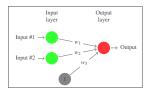
Idea from a blog post: Olah, **Neural Networks, Manifolds, and Topology**: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Define a simple network:

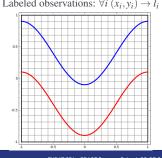


 $o_i = < [x_i \ y_i], [w_1 \ w_2] > +w_3$

Define a simple network:

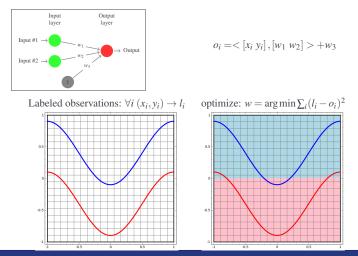


 $o_i = < [x_i \ y_i], [w_1 \ w_2] > +w_3$

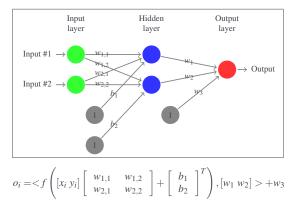


Define a simple network:

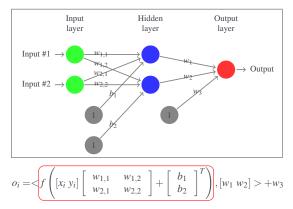
$$o_i = < [x_i \ y_i], [w_1 \ w_2] > +w_3$$

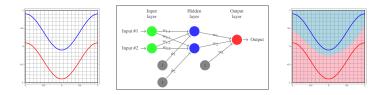

Labeled observations: $\forall i (x_i, y_i) \rightarrow l_i$ optimize: $w = \arg \min \sum_i (l_i - o_i)^2$

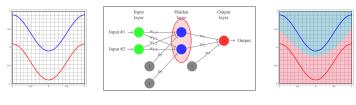
Define a simple network:



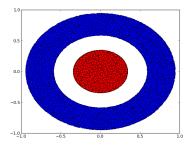
EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy


Add an hidden layer:

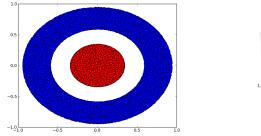

Add an hidden layer:

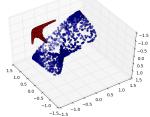

Hidden layer: evaluated features

Hidden layer: evaluated features

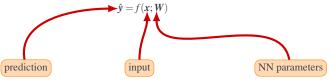


Increase the dimensionality




- It is impossible for a neural network to classify this dataset without having a layer that has 3 or more hidden units, regardless of depth
- ▶ Even if it can get an 80% of classification accuracy

Increase the dimensionality


- It is impossible for a neural network to classify this dataset without having a layer that has 3 or more hidden units, regardless of depth
- ▶ Even if it can get an 80% of classification accuracy

Neural Network Internals: classification problem

 Given a single input, a trained neural network is able to predict a distribution of probability:

Neural Network Internals: classification problem

• Given a single input, a trained neural network is able to predict a distribution of probability:

$$\hat{\boldsymbol{y}} = f(\boldsymbol{x}; \boldsymbol{W})$$

NN paramaters are chosen in order to minimize the average error on a given training set $\left\{ x^{(i)}, y^{(i)} \right\}_{i=1}$:

$$J(\boldsymbol{W}) = \frac{1}{N} \sum_{1}^{N} L\left(f(\boldsymbol{x}^{(i)}; \boldsymbol{W}), \boldsymbol{y}^{(i)}\right)$$

Neural Network Internals: classification problem

Given a single input, a trained neural network is able to predict a distribution of probability:

$$\hat{\boldsymbol{y}} = f(\boldsymbol{x}; \boldsymbol{W})$$

- NN paramaters are chosen in order to minimize the average error on a given training set $\left\{ x^{(i)}, y^{(i)} \right\}_{i=1}$: $J(\boldsymbol{W}) = \frac{1}{N} \sum_{1}^{N} L\left(f(\boldsymbol{x}^{(i)}; \boldsymbol{W}), \boldsymbol{y}^{(i)}\right)$
- ▶ a Stochastic Gradient Descent (SGD) algorithm step is:

$$\boldsymbol{W}^{(k+1)} = \boldsymbol{W}^{(k)} - \boldsymbol{\varepsilon}_k \hat{\boldsymbol{g}}^{(k)} \quad \text{where} \quad \hat{\boldsymbol{g}}^{(k)} = \frac{1}{n} \nabla_{\boldsymbol{W}} \sum_{l \in \text{batch}} L(f(\boldsymbol{x}^{(l)}; \boldsymbol{W}^{(k)}), \boldsymbol{y}^{(l)}), \quad n = \text{\#batch}$$

Backpropagation

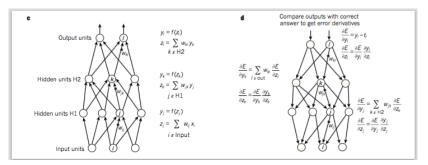


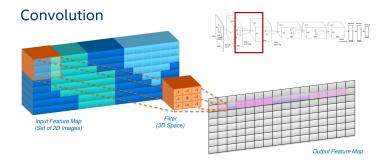
Image from Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep Learning, Nature 2015.

See also:

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

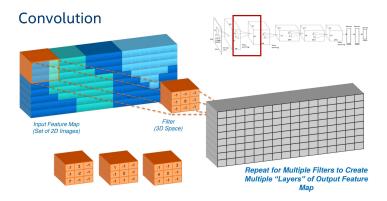
Introduction

Machine Learning Background

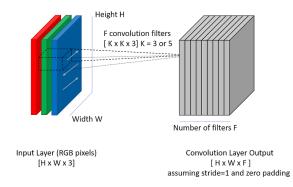

Deep Learning: a review

Convolutional Networks

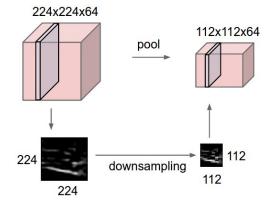
Convolutional layer (I)



Convolutional layer (I)

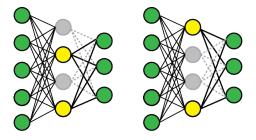


Convolutional layer (II)



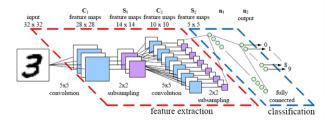
- Convolution Layer output: $H \frac{K-1}{2}$, $W \frac{K-1}{2}$ with *stride* = 1 and without padding
- For each filter we have $K \times K \times 3$ weights
- > The filter convolves over all spatial locations, producing a scalar for each location
- An activation function is finally applied

Pooling layer



- makes the representations smaller and more manageable
- operates over each activation map independently
- Example: max pooling computes the maximum with $K \times K$ filter

Dropout layer



- In each forward pass, randomly set some neurons to zero.
- ▶ Probability of dropping is a hyperparameter; 0.5 is common

Convolutional network

- ► LeNet² . The first successful convolutional neural network
- Designed to identify hand-written digits in the MNIST dataset
- LeNet-5 takes a single-channel 2D input
- Performs 6 convolution (5×5) , then subsamples by max-pooling (2×2) .
- ► The convolution-pooling layer sequence occurs again
- Finally 2 fully connected layer followed by a fully connected softmax layer is performed

²Yann Lecun and Léon Bottou and Yoshua Bengio and Patrick Haffner, Gradient-based learning applied to document recognition, 1998

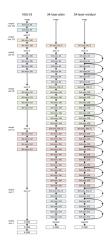
Reference Convolutional Neural Networks

CNN used in image classification with reference results available:

- VGG 16 (Simonyan, Zisserman, 2014)
 - ▶ thirteen convolutional layers (kernel size: 3 × 3 output channels: 64, 128, 256, 512)
 - five maxpool layers
 - three fully connected layers
 - Rectified Linear Unit ReLU as nonlinear activation function
- ▶ ResNet 50 and 152 (He, Zhang, Ren, Sun, 2015)
 - fifty and one hundred fifthy-two convolutional layers
 - various kernel sizes (7 × 7,3 × 3,1 × 1);
 - various output channels: 64, 128, 256, 512;
 - max-pool and fully-connected layers;
 - "residual" learning: output of convolutional layer is summed to input that generated it;
 - Rectified Linear Unit (ReLU) as nonlinear activation function
- Inception (Szegedy, Vanhoucke, Ioffe, Shlens, Wojna 2015)
 - six convolutional layers
 - ► ten Inception modules
 - Rectified Linear Unit ReLU as nonlinear activation function

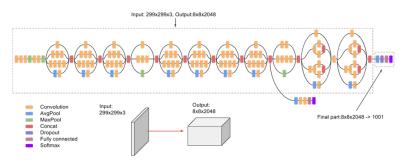
VGG

		ConvNet C	onfiguration		
A	A-LRN	B	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			pool		conv3-250
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			pool		conv3-512


Source: Simonyan & Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

ResNet


Source: He, Zhang, Ren & Sun, Deep Residual Learning for Image Recognition, 2015

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

PRACE

Inception

Source: Advanced Guide to Inception v3 on Cloud TPU

Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, Rethinking the Inception Architecture for Computer Vision, 2015

PRACE

Imagenet dataset

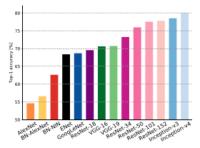
- ► 22000 classes 11M labeled image examples
- Reduced to 1000 classes and 1.4M images
- The smaller dataset has both fine and coarse-grained classes
- ► Synthetic version keeps size intact (224x224)

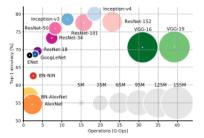
image-net.org

Training Imagenet results

Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50

	Batch Size	Processor	DL Library	Time	Accuracy
He et al. [7]	256	Tesla P100 x8	Caffe	29 hours	75.3%
Goyal et al. [1]	8K	Tesla P100 x256	Caffe2	1 hour	76.3%
Smith et al. [4]	8K→16K	full TPU Pod	TensorFlow	30 mins	76.1%
Akiba et al. [5]	32K	Tesla P100 x1024	Chainer	15 mins	74.9%
Jia et al. [6]	64K	Tesla P40 x2048	TensorFlow	6.6 mins	75.8%
This work	34K→68K	Tesla V100 x2176	NNL	224 secs	75.03%


Table 2 : GPU scaling efficiency with ImageNet/ResNet-50 training


	Processor	Interconnect	GPU scaling efficiency
Goyal et al. [1]	Tesla P100 x256	50Gbit Ethernet	~90%
Akiba et al. [5]	Tesla P100 x1024	Infiniband FDR	80%
Jia et al. [6]	Tesla P40 x2048	100Gbit Ethernet	87.9%
This work	Tesla V100 x1088	Infiniband EDR x2	91.62%

Mikami, Suganuma, U-chupala, Tanaka & Kageyama, ImageNet/ResNet-50 Training in 224 Seconds

CNN comparison

- ► Inception-v4: Resnet + Inception
- VGG High memory and operations
- GoogLeNet very efficient
- Alexnet few operations but high memory and low accuracy
- Resnet moderate efficency and high accuracy

Canziani, Alfredo; Paszke, Adam; Culurciello, Eugenio; An Analysis of Deep Neural Network Models for Practical

Links and credits

- Fei-Fei Li, Justin Johnson, Serena Yeung CS231n
- https://developers.google.com/machine-learning/crash-course/
- https://eu.udacity.com/course/deep-learning-ud730
- https://www.kaggle.com/competitions
- Deep Learning, Ian Goodfellow; Yoshua Bengio; Aaron Courville. https://www.deeplearningbook.org/
- http://neuralnetworksanddeeplearning.com/
- Deep Learning with Python, François Chollet
- Credits to Riccardo Zanella for the first version of this course, and Stefano Tagliaventi.